A new combinatorial identity for Bernoulli numbers and its application in Ramanujan’s expansion of harmonic numbers

نویسندگان

چکیده

We establish a new combinatorial identity related to the well-known Bernoulli numbers, which generalizes result due Feng and Wang. By means of identity, we find recursive formula for successively determining coefficients Ramanujan?s asymptotic expansion generalized harmonic numbers

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bernoulli Numbers and a New Binomial Transform Identity

Let (b n) n≥0 be the binomial transform of (a n) n≥0. We show how a binomial transformation identity of Chen proves a symmetrical Bernoulli number identity attributed to Carlitz. We then modify Chen's identity to prove a new binomial transformation identity.

متن کامل

A combinatorial identity with application to Catalan numbers

By a very simple argument, we prove that if l, m, n ∈ {0, 1, 2, . . . } then

متن کامل

A Combinatorial Identity with Application to Catalan Numbers 3

l k=0 (−1) m−k l k m − k n 2k k − 2l + m = l k=0 l k 2k n n − l m + n − 3k − l. On the basis of this identity, for d ∈ {0, 1, 2,. .. } and ε ∈ {0, ±1} we construct explicit f ε (d) and g ε (d) such that for any prime p > d we have p−1 k=1 k ε C k+d ≡ f ε (d) if p ≡ 1 (mod 3), g ε (d) if p ≡ 2 (mod 3), where C n denotes the Catalan number 1 n+1 2n n ; for example, if p 5 is a prime then 0<k<p−4 ...

متن کامل

Umbral Methods, Combinatorial Identities and Harmonic Numbers

We analyse and demonstrate how umbral methods can be applied for the study of the problems, involving combinatorial calculus and harmonic numbers. We demonstrate their efficiency and we find the general procedure to frame new and existent identities within a unified framework, amenable of further generalizations.

متن کامل

Carlitz’s Identity for the Bernoulli Numbers and Zeon Algebra

In this work we provide a new short proof of Carlitz’s identity for the Bernoulli numbers. Our approach is based on the ordinary generating function for the Bernoulli numbers and a Grassmann-Berezin integral representation of the Bernoulli numbers in the context of the Zeon algebra, which comprises an associative and commutative algebra with nilpotent generators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2023

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2306733x